Conventional SENSE requires accurate estimation of coil sensitivity maps, which remains to be a challenge in practical scenarios. This study aims to apply CNN to extract coil sensitivity information from the undersampled center k-space, and use the estimated sensitivity maps for parallel imaging. Results show that no obvious residual signal can be seen in the reconstructed images for all cases, which indicates the efficacy of the proposed method. Besides, the CNN based SENSE image without ACS appears to be less noisy than conventional SENSE results with ACS, which may benefit from the denoising effect from CNN on the sensitivity maps.
This abstract and the presentation materials are available to members only; a login is required.