This paper proposes an enhanced denoising autoencoder prior (EDAEP) network learning method for multi-contrast MR reconstruction using deep learning. Specifically, a multi-model autoencoder with various noise levels was developed to capture different features from multi-contrast images. A weighted aggregation strategy was also adopted to balance the impact of multiple model outputs. These designs empower the network to explore the correlations and similarities among multi-contrast images, handle different acceleration trajectories and avoid a lot of cumbersome retraining. Experimental results demonstrate that our method can improve the quality of reconstructed images compared to other classical methods.
This abstract and the presentation materials are available to members only; a login is required.