Exact knowledge of currents flowing inside the human brain is important for several neuroscientific applications. MRCDI combines MR with externally injected weak currents, and uses measurements of the current-induced magnetic field to estimate spatial current distribution. The method’s accuracy highly depends on the sensitivity and spatial resolution of the field measurements. Here, we improve the currently most sensitive MRCDI method based on steady-state free precession free induction decay (SSFP-FID) by using an acquisition-weighted scheme (AW-MRCDI). We compared weighted and conventional schemes by phantom experiments. AW-MRCDI demonstrated 59% increase in sensitivity and significantly improved the spatial resolution.
This abstract and the presentation materials are available to members only; a login is required.