The inhomogeneous B1 excitation profile of 13C surface transmit/receive coils results in a decreasing gradient of flip angles for voxels increasingly farther away from the coil. For accurately quantifying the pyruvate to lactate conversion rate (kPL), the flip angle needs to be corrected based on the B1 excitation profile. A voxel-wise B1 excitation field correction method for hyperpolarized 13C MRSI scans of human patients was developed and applied, yielding an improved quantitative accuracy of kPL values in metastatic cancer patients. The corrected kPL estimations agree with simulations where over-flip leads to an underestimation of kPL, whereas under-flip leads to overestimation.
This abstract and the presentation materials are available to members only; a login is required.