In the present study, we developed a 2-level classification model with an overall accuracy of 88.1 ± 6.7% for discriminating the stroke hemisphere into the infarct core (IC), ischemic penumbra (IP), and normal tissue regions on a voxel-wise basis in a permanent left middle cerebral artery occlusion model. According to the analysis results, we suggest that a single diffusion tensor imaging (DTI) sequence combined with machine learning (ML) algorithms can dichotomize ischemic tissue into the IC and IP, which are comparable to the conventional perfusion–diffusion mismatch.
This abstract and the presentation materials are available to members only; a login is required.