Imaging based diagnosis of Pilocytic Astrocytoma (PA) is quite important for better prognosis. PA can easily be misdiagnosed since its location, growth pattern, and contrast enhancement often mimic a more aggressive high-grade glioma(HGG) tumor. In the current study, quantitative analysis of T1-Perfusion(DCE) MRI data was performed followed by extraction of various features from tumor region and development of an optimized support-vector-machine(SVM) classifier for automatic differentiation of PA vs HGG. The proposed machine learning based approach which uses features derived from quantitative T1 perfusion MRI and tumor volume fraction can enable accurate diagnosis of PA and HGG tumors.
This abstract and the presentation materials are available to members only; a login is required.