Multiple sclerosis studies following the widely accepted MAGNIMS protocol guidelines might lack non-contrast-enhanced T1-weighted acquisitions as they are only considered optional. Most existing automated tools to perform morphological brain analyses are, however, tuned to non-contrast T1-weighted images. This work investigates the use of deep learning architectures for the generation of pre-Gadolinium from post-Gadolinium image volumes. Two generative models were tested for this purpose. Both were found to yield similar contrast information as the original non-contrast T1-weighted images. Quantitative comparison using an automated brain segmentation on original and synthesized non-contrast T1-weighted images showed good correlation (r=0.99) and low bias (<0.7 ml).
This abstract and the presentation materials are available to members only; a login is required.