Traditional MRI relies on the temporal separation of the receiver (RX) and transmitter (TX) to solve the problem of self-interference. Often, the TX signal is billions of times larger than the RX signal, and T/R switches are used so the TX does not saturate or destroy the RX. This leads to an inefficient method of acquiring imaging data for especially fast decaying signals. We propose a magnetic-free, PCB based circulator to remove the T/R switch and achieve simultaneous transmit and receive MRI. We present images of a phantom acquired with a continuous SWIFT sequence to validate the concept.
This abstract and the presentation materials are available to members only; a login is required.