Dynamic 17O-MRI enables direct quantification of the cerebral metabolic rate of oxygen (CMRO2) consumption. We investigated hemispherical dependence of the method in three healthy volunteers as well as its potential for mapping neuronal activity associated with finger tapping in one healthy volunteer. Our findings were consistent with previous results, demonstrating higher CMRO2 values in gray compared to white matter. Evaluation of left/right hemispheric CMRO2 values without sensomotoric stimulation demonstrated hemispherical independence of the technique. The finger-tapping experiment demonstrated increased 17O-signal in the stimulated sensorimotor cortex and adjacent brain tissue, indicating that dynamic 17O-MRI may permit visualization of physiological neuronal activity.
This abstract and the presentation materials are available to members only; a login is required.