Detection and monitoring of chronic liver diseases is typically assessed using a combination of clinical history, physical examination, laboratory testing, biopsy with histopathologic assessment, and imaging. The aim of this study is to develop a deep transfer learning model (DeepLiverNet) to categorically classify the severity of liver stiffening (no/mild vs. moderate/severe) using both anatomic T2-weighted MR images and clinical data. The DeepLiverNet model achieved accuracies of 88.0% and 80.0% on the risk stratification of liver stiffness in internal and external validation datasets, respectively. This demonstrates that a deep learning model may provide a means for stratifying liver stiffness without elastography.
This abstract and the presentation materials are available to members only; a login is required.