While the consensus statement on the recommended implementation of arterial spin labeling (ASL) has advanced ASL to clinical application, variations in labeling efficiency, longitudinal relaxation time of blood and arterial transit times can cause significant quantification errors. With simulation experiments, it is shown that sacrificing ASL scan time for measurements of these parameters improves the estimation reproducibility of the cerebral blood flow on a population level. Furthermore, multi-delay ASL modalities in combination with these extra measurements can compete with or outperform the single-delay consensus implementation in terms of estimation accuracy and precision, depending on the underlying distribution of transit times.
This abstract and the presentation materials are available to members only; a login is required.