The magnitude and phase of the gradient echo signal in biological tissue highly depend on its iron concentration. A quantitative evaluation of the iron concentration, however, is complicated due to the complex interplay between susceptibility and diffusion effects. In this work, we analyze the gradient echo signal as well as the spin echo signal of uniformly distributed particles, with inclusion of diffusion and susceptibility effects, and provide analytical relations that connect magnitude, phase and iron concentration. This allows a quantitative description of the iron concentration based on magnitude or phase images.
This abstract and the presentation materials are available to members only; a login is required.