Inhomogeneous magnetization transfer (ihMT) effects have been readily observed in myelinated structures. The advent of low duty-cycle ihMT to increase the signal allows application of ihMT in other tissues. In this work, we explore the feasibility of applying ihMT in non-myelinated tissues such as the heart, liver, and kidneys of mice. This is achieved using a radial, ultra-short echo-time acquisition for greater motion robustness. The results demonstrate a measurable ihMT signal outside the central nervous system. Thus the microstructure of such tissues might be assessed based on the dipolar order contribution to ihMT.
This abstract and the presentation materials are available to members only; a login is required.