Prospective multicentre studies are needed to establish the clinical value of the central vein sign for diagnosis of multiple sclerosis. This type of studies requires manual segmentation and classification of lesions with and without the central vein sign, which are time-consuming tasks. In this work, we evaluate the performance of an in-house deep-learning-based prototype algorithm for automated assessment of the central vein sign using data from two different healthcare units.
This abstract and the presentation materials are available to members only; a login is required.