The use of parallel imaging (PI) to exploit the encoding power of multiple coil sensitivity patterns is essential for any modern method for accelerating MRI. In practice, the need to estimate sensitivity maps when using an image-space PI formulation delays the image reconstruction process, particularly for non-Cartesian acquisitions. This paper presents a deep learning method to estimate sensitivity maps from non-Cartesian dynamic imaging data. Results show that this algorithm provide a significant reduction in the time (from 42s to 2.5s for 12 coils) for generating high-quality coil sensitivity maps from non-Cartesian MR data compared to the conventional algorithms.
This abstract and the presentation materials are available to members only; a login is required.