Non-linear spatial encoding magnetic (SEM) fields can accelerate data acquisitions and improve the image quality. O-Space imaging generates a radially varying SEM field for spatial encoding in order to achieve more efficient encoding. In this work, we introduce and evaluate a novel primal dual algorithm which can handle the inverse problems of non-smooth convex optimization with non-linear forward operators to reconstruct O-Space images from undersampled data. The experimental results on simulated data show that the proposed method can achieve better image quality compared with the existing methods.
This abstract and the presentation materials are available to members only; a login is required.