Iterative compressed sensing reconstruction of real-time phase-contrast MR images acquired with highly-accelerated radial k-space sampling produces considerable image blurring. We propose a Cartesian Golden-angle radial sparse parallel (GRASP) framework that achieves a good balance between image reconstruction speed and data fidelity. The performance of the proposed reconstruction framework is compared with the original GRASP and GROG-GRASP frameworks using 38.4-fold accelerated phase-contrast MRI data acquired from pediatric patients.
This abstract and the presentation materials are available to members only; a login is required.