Sickle cell disease (SCD) and chronic anemia cause morphological abnormalities in the cerebral arterial vasculature that are observable using time-of-flight magnetic resonance angiography (MRA). We seek to evaluate the accuracy of automatic vessel segmentation algorithms in extracting vessel data from these images for further analysis. Five segmentation algorithms were applied to three MRA images (one control, one anemic, and one SCD patient) and performance was measured against manually segmented ground truth data. We found that automatic segmentation performs better in anemic and SCD patients over healthy controls.
This abstract and the presentation materials are available to members only; a login is required.