In this work, we demonstrate the application of a non-Cartesian unrolled architecture in reconstructing images from undersampled 3D cones datasets. One shown application of this method is for reconstructing undersampled 3D image-based navigators (iNAVs), which enable monitoring of beat-to-beat nonrigid heart motion during a cardiac scan. The proposed non-Cartesian unrolled network architecture provides similar outcomes as l1-ESPiRIT in one-twentieth of the time, and the reconstructions exhibit robustness when using an undersampled 3D cones trajectory.
This abstract and the presentation materials are available to members only; a login is required.