We used a reference-free model based on convolutional neural network (RF-CNN) to reconstruct the under-sampled magnetic resonance images. The model was trained without fully sampled image (FS) as the reference. We compared our model with the traditional compressed sensing reconstruction (CS) and the CNN model trained by FS. Mean square error and structure similarity were used to evaluate the model. Our RF-CNN model performed better than CS, but did not perform as good as usual CNN model.
This abstract and the presentation materials are available to members only; a login is required.