The Genetic Algorithm (GA) is motivated by the process of natural selection, allowing mutliple initialisations. Due to the stochastic nature of genetic algorithms they are beneficial in avoiding local minima, although they can require significantly more function evaluations to run than a traditional solver. In this work, motivated by the field of shape optimisation, an approach is taken to perform the joint design of RF and gradient waveforms using a GA with a GPU-accelerated iterative solver.
This abstract and the presentation materials are available to members only; a login is required.