MR Fingerprinting schedule optimization can reduce scan times and improve accuracy but typically relies on minimization of indirect metrics rather than the actual reconstruction error due to the computational challenges involved in calculating the reconstruction error at each iteration of the optimization. Here we introduce a Deep Learning framework that can overcome these challenges and allow direct minimization of the reconstruction error. The proof-of-principle is demonstrated using simulations on a numerical brain phantom.
This abstract and the presentation materials are available to members only; a login is required.