To make the MRF technique most suitable for clinical needs, efforts are still to be made to accelerate MRF acquisitions while maintaining the accuracy in parameter determination. However, the dictionary calculation is a heavy computational burden for each trial MRF measurement within the optimization process. In this work, we present a numerical study on the optimization of MRF-FISP sequences by using a parallel tempering algorithm. Specifically, an optimization framework tailored for MRF with severe k-space undersampling was developed based on the previously proposed dictionary-free reconstruction (DFR). In vivo measurements were carried out to evaluate the performance of the optimized sequence.
This abstract and the presentation materials are available to members only; a login is required.