The differentiation of recurrent tumor from radiation necrosis after radiation therapy remains often challenging in patients with brain tumor despite various advanced MR imaging techniques. The purpose of this study was to explore the feasibility of hyperpolarized 13C metabolic imaging in differentiating brain tumor from radiation necrosis. The lactate signal in radiation necrosis model was significantly lower than that in glioma and lung cancer metastasis. This suggests that the non-invasive characterization of real-time metabolism using this new neuroimaging method may be helpful for differentiating radiation-induced necrosis from recurrent brain tumors.
This abstract and the presentation materials are available to members only; a login is required.