The neuronal specificity of gradient echo (GE) BOLD is diminished by the extravascular signal from large draining veins, whose contribution can be reduced by using small voxel sizes and sampling far away from the cortical surfaced. Here we use simulations of the GE-BOLD signal based on a realistic vascular network (VAN) to quantify the extent of the pial vein dominance into the cortex field strengths between 7 and 14 Tesla. We estimate a pial vessel dominance down to a depth of 800 μm at 14 Tesla in humans, suggesting that small GE-BOLD voxels below this depth can be immune to the effects of these surface vessels.
This abstract and the presentation materials are available to members only; a login is required.