In this study we successfully created the first high-resolution cardiac Diffusion Tensor (DT) imaging-based fiber atlas from porcine hearts. Furthermore, we laid the foundation of a framework for building a statistical cardiac atlas by computing an average cardiac geometry from a small database (N=8) of explanted porcine hearts without the need for selecting landmarks, transforming the diffusion tensors of subjects, and obtaining the associated average DT field and fiber architecture. The fiber atlas can be used for personalized electro-mechanical simulations of cardiac function (in anisotropic models when DT data is not available), and aid in diagnosis or therapy guidance procedures.
This abstract and the presentation materials are available to members only; a login is required.