Fiber ball imaging (FBI) is a recently proposed diffusion MRI (dMRI) method for estimating fiber orientation density functions together with specific microstructural parameters in white matter. The theory underlying FBI predicts the b-value dependence for the dMRI harmonic power of any given degree as long as the b-value is sufficiently large. Good agreement between theory and experiment has been previously demonstrated for the zero-degree harmonic power. Here the predicted functional forms for higher degree harmonics are shown to also agree well with experimental measurements, providing additional support for the validity of FBI.
This abstract and the presentation materials are available to members only; a login is required.