In this work, we investigate the potential of machine learning techniques to make one step forward by quantitatively estimating beading amplitude, a specific marker of pathological beading using frequency-dependent changes in diffusion measurements. Classification and regression are performed using Extremely Randomized Trees from OGSE signals corresponding to 6 distinct frequencies and synthesized from numerical simulations in realistic white matter phantoms depicting beaded axons.
This abstract and the presentation materials are available to members only; a login is required.