The disruption of specific microstructural features of white-matter (WM) has been observed in methamphetamine (MA) abusers. However, it remains unknown whether WM volume is abnormal in MA abusers. To address this issue, a machine learning approach was applied in this study to differentiate between 21 MA abusers and 13 age- and gender- healthy controls. Our results showed that a linear support vector machine classifier achieved an accuracy of 73.53% using the white matter volume as input features. Particularly, the most discriminative WM regions included pontine crossing tract, motor system and the reading related network.
This abstract and the presentation materials are available to members only; a login is required.