EEG nets are typically removed before MR imaging due to their negative effects on image quality, which is time-consuming and interrupts monitoring of brain activity. We tested whether the InkNet, a high-resistance polymer thick-film based EEG net, could improve images by reducing RF-shielding caused by copper leads. We imaged subjects with FLAIR and diffusion at 3 Tesla, wearing a conventional, copper-lead net, the InkNet, or no EEG net (NoNet). The InkNet induced less artifact than conventional nets, and produced similar image quality to the NoNet control. Results suggest that high-quality imaging can be achieved while wearing an EEG net.
This abstract and the presentation materials are available to members only; a login is required.