Brain tissue deformation induced by the cardiac and respiration cycles could be a valuable source of information on the physiology of the brains tissue properties. In this work, we assess the tissue deformation by computing the tissue strain from DENSE displacement data sets and unravel cardiac and respiratory contributions by using a linear model. We observed consistent trends in the three strain components due to cardiac and respiration cycles, which agree with blood volume changes. In contrast to tissue displacement, the tissue strain may serve as a reliable novel marker of physiological blood volume dynamics in the brain.
This abstract and the presentation materials are available to members only; a login is required.