Half-Fourier-acquisition-single-shot-turbo-spin-echo (HASTE) serves as a valuable tool for fetal MRI as it is robust to fetal motion and produces images with T2-weighted contrast. However, due to T2-decay and T1-recovery during the acquisition, clinically applied HASTE with sub-180° refocusing pulses and partial-fourier readouts, often yield images with compromised diagnostic quality compared to multi-shot T2-weighted imaging. T2-shuffling exploits a forward model of signal evolution to mitigate blurring and improve contrast in image reconstruction. We propose single-shot imaging with a refined-subspace, iterative application of T2-shuffling, with demonstration in numerical models, that reduces blurring artifacts and improves image contrast in comparison to conventional HASTE.
This abstract and the presentation materials are available to members only; a login is required.