The detection of Nicotinamide adenine dinucleotide (NAD+) proved to be challenging in 1H Magnetic Resonance Spectroscopy, as standard water presaturation showed to lead to a strong suppression of NAD+ signals due to the polarization exchange between NAD+ and water. For the detection of such low-concentration metabolites, a high Signal-to-Noise-Ratio (SNR) is crucial. One possibility to increase the SNR is to choose a large voxel size (VS). In this study we show that optimizing acquisition parameters focusing on high SNR and increasing the VS to 75 cm3 allows the detection of NAD+ at 3T with a semi-LASER sequence despite water presaturation.
This abstract and the presentation materials are available to members only; a login is required.