Engineering three-dimensional (3D) tissues with similar properties to native myocardium offers a promising approach to restore cardiac function after myocardial infarction. However, visualizing the orientation of the tissue in tissue engineered cardiac patches using immunofluorescent imaging has proven difficult due to the 3D and dense tissue structure. In this study, we have applied diffusion tensor imaging at 22.3T at ultra-high resolution (62.5μm isotropic) to characterize the tissue properties of cardiac patches. We show that adding fibroblasts induces cellular organization of stem cell-derived cardiomyocytes in the patch, resulting in more diffusion restriction and higher anisotropy, better mimicking native myocardial tissue properties.
This abstract and the presentation materials are available to members only; a login is required.