Motion-compensated spin echo sequences have been developed to obtain diffusion sensitivity in the presence of bulk cardiac motion. First and second order motion can be compensated but higher order motion can occur in certain cardiac phases. Here, we propose a real-time velocity-encoded sequence (6ms time resolution) to optimize and adapt the trigger delay on a subject-specific basis. In one volunteer, the variability in diffusion signal was analyzed as a function of trigger delay and compared to myocardial velocity profiles. Mid-systole was found to provide the most reliable ADC and conversely the worst ADC was found in early diastole.
This abstract and the presentation materials are available to members only; a login is required.