A widely-accepted method to estimate hepatic proton-density fat fraction (PDFF) is by averaging values derived from manually drawn regions-of-interest (ROIs) in the nine Couinaud segments. An automated deep-learning-based segmentation tool has been developed to potentially replace this labor-intensive and technically-challenging method. The purpose of this study was to compare whole-liver PDFF values obtained using this auto-segmentation tool to results obtained using manual analysis for a longitudinal multi-center clinical trial of 72 patients with nonalcoholic steatohepatitis. We found that PDFF values estimated using the auto-segmentation tool were in near agreement with values derived by manually drawing ROIs.
This abstract and the presentation materials are available to members only; a login is required.