Limited human intuition of the Bloch equations’ nonlinear dynamics, particularly over long periods of non-steady-state time evolution or in regimes such as off-resonance excitation, is an obstacle to fully exploiting the vast parameter space of potential MR pulse sequences. Our previous work introduced a computational graph approach to modeling the Bloch equations. In this work, we show the AUTOSEQ framework extended with a multilayer fully-connected neural network to perform fast quantitative MR parameter measurement. By employing continuous off-resonant excitation with simultaneous continuous receive, we demonstrate in simulated experiments the ability to quantify T1 and T2 parameters in a single TR.
This abstract and the presentation materials are available to members only; a login is required.