To improve the quality and efficiency of multi-contrast MR neuroimaging, a new Multi-Task Generative Adversarial Network (GAN) is proposed to synthesize multiple contrasts using a uniformed network. The cohort of 104 subjects consisting of both healthy and pathological cases is used for training and evaluation. For both the subjective and non-subjective evaluation, the proposed method achieved improved diagnostic quality compared with state-of-the-art synthetic MRI image reconstruction methods based on model-fitting and also previously shown deep learning methods.
This abstract and the presentation materials are available to members only; a login is required.