In this study, we aimed to develop a convolutional neural network (CNN) to classify carotid atherosclerotic lesions in high-resolution multicontrast MR images automatically using the modified American Heart Association (AHA) classification scheme as criteria. The network was trained on a large number of plaque images combined with lesion type labeled by experienced radiologists. Transfer learning was utilized to take the advantage of state-of-the-art CNN pre-trained on ImageNet dataset. The accuracy of lesion type classification achieved 85.1% with preprocessing and fine-tuning of the network.
This abstract and the presentation materials are available to members only; a login is required.