Streaking artifacts are a common source of image quality degradation in radial MRI even with sufficient sampling. While coil removal is popularly used to mitigate streaking artifacts, this method is known to suffer from undesirable signal loss. Recently, a streak artifact reduction method has been proposed that offers a better balance between artifact reduction and signal retention. This approach endows the channel combination maps with the ability to suppress streaking artifacts and is implemented as a post-processing step. In this work, we present a computationally efficient refinement of this approach and extend it to multi-contrast imaging and parameter mapping applications.
This abstract and the presentation materials are available to members only; a login is required.