High-resolution images are needed in many MR applications to enhance the diagnostic information at early stages of the disease. Often, the achievable resolution is limited by acquisition time constraints, in particular in moving organs such as the lung, where rapid imaging is a necessity. The low proton density in the lung parenchyma further constrains the resolution as sufficiently high signal-to-noise ratio (SNR) requires large voxel size. In this work, the concept of super-resolution is investigated to increase the spatial resolution and potentially shorten the acquisition time for functional assessment in the lung without SNR penalty.
This abstract and the presentation materials are available to members only; a login is required.