Recent studies have shown that anatomical MR images with sub-millimeter resolution can improve the accuracy of cortical surface and thickness estimation compared to the standard 1-millimeter isotropic resolution. Here we propose a new method, entitled SuperSurfer, that synthesizes sub-millimeter anatomical MR images from standard 1-mm isotropic anatomical images using a convolutional neural network-based super-resolution approach intended for improved cortical surface reconstruction. We quantified the displacement of the reconstructed surfaces and difference in cortical thickness derived from the super-resolution and standard-resolution data and demonstrated that SuperSurfer provides improved cortical surfaces that are similar to those obtained from native sub-millimeter resolution data.
This abstract and the presentation materials are available to members only; a login is required.