This abstract proposes a framework for robust reconstruction of MR images from highly undersampled measurements. Inspired by proximal gradient descent (PGD) iterations a recurrent neural network is trained to learn a high diagnostic proximal using Wasserstein GANs. For a Knee dataset, the proximal modeled with only two residual blocks shared across 5 iterations not only trains fast but also reveals fine diagnostic details with limited training data. All in all, this study suggests that sharing the proximal weights across iterations regularizes the reconstruction and improves the generalization.
This abstract and the presentation materials are available to members only; a login is required.