In the current study, we have demonstrated that pH- and oxygen-sensitive amine CEST-SAGE-EPI (chemical exchange saturation transfer spin-and-gradient-echo echoplanar imaging) is a clinically feasible, powerful imaging technique for distinguishing between IDH1-mutant and wild-type gliomas. Results suggest that IDH1 mutation is associated with lower MTRasym at 3.0ppm and lower R2’, implying lower acidity and vascular hypoxia. We hypothesize that 2-HG produced by IDH1-mutant activates PHD and the degradation of HIF1α, subsequently preventing a metabolic shift from oxidative phosphorylation to glycolysis. This is supported by our histological findings of loss of correlation between levels of hypoxia and HIF1α tissue expression in IDH1 mutants.
This abstract and the presentation materials are available to members only; a login is required.