Segmentation of breast and fibroglandular tissue (FGT) using the U-net architecture was implemented using training MRI from 286 patients, and the developed model was tested in independent validation datasets from 28 healthy women acquired using 4 different MR scanners. The dice similarity coefficient was 0.86 for breast, 0.83 for FGT; and the accuracy was 0.94 for breast and 0.93 for FGT. The results on MRI acquired using different MR scanners were similar. U-net provides a fully automatic, efficient, segmentation method in large MRI datasets for evaluating its role on breast cancer risk assessment and hormonal therapy response prediction.
This abstract and the presentation materials are available to members only; a login is required.