To separately visualize respiratory- and cardiac-driven motions of intracranial cerebrospinal fluid (CSF) under free breathing, CSF velocity distribution in 6 healthy volunteers and 3 hydrocephalus patients were acquired with asynchronous real time phase contrast (PC). Spectrograms of CSF velocity waveform as well as ECG and respiratory signals were obtained by Stockwell Transform (ST), in which the length of a Gaussian window length was adaptively changed according to the time-varying frequency of the signals. Comparison with the conventional short-term Fourier transform (STFT) with fixed length window revealed that separation of respiratory and cardiac components of CSF motion was possible with ST.
This abstract and the presentation materials are available to members only; a login is required.