Common machine learning approaches to differentiate between Temporal Lobe Epilepsy (TLE) and healthy controls often include extensive preprocessing techniques that often entail feature extraction, resulting in a more time-intensive and variable approach. Utilizing data from both the Epilepsy Connectome Project (ECP) and Human Connectome Project (HCP), this study attempts to develop, train, and validate a deep learning classifier to automatically differentiate between TLE patients and healthy subjects using resting-state fMRI (rs-fMRI) and task fMRI (t-fMRI) data alone without advanced preprocessing steps or feature extraction.
This abstract and the presentation materials are available to members only; a login is required.