We introduce a new regularization approach, “Match Regularization”, and show that in tandem with Global Maxwell Tomography (GMT) it enables accurate, artifact-free volumetric estimation of electrical properties from noisy B1+ measurements. We demonstrated the new method for two numerical phantoms with completely different electrical properties distributions, using clinically feasible SNR levels. Estimated electrical properties were accurate throughout the volume for both phantoms. Our results suggest that GMT with match regularization is robust to noise and can be employed to map electrical properties in phantoms and in vivo experiments.
This abstract and the presentation materials are available to members only; a login is required.