Magnetic Resonance Fingerprinting (MRF) is an MR technique that generates parameter maps by matching pseudo randomly generated MR signals to a precalculated dictionary. MRF sequences in general consist of a long series of closely spaced excitations. An assumption underlying MRF is that a partially motion-corrupted signal is not able to significantly alter results. Corrupted signal segments are supposed to have no respective counterpart in the dictionary and therefore do not affect the pattern match. This assumption is evaluated in this study. Controlled motion was added to phantom and in vivo MRF experiments, and the results were related to realistic patient movement recorded by a 3D camera system.
This abstract and the presentation materials are available to members only; a login is required.