A major challenge for human Hyperpolarized 13C metabolic MRI is to develop informative, accurate and robust methods for measuring metabolic conversion, while accounting for a broad range of experimental characteristics and without gold-standard experiments for evaluating accuracy and precision. We present a simulation framework to evaluate analysis strategies and show that an “input-less” kPL fitting method is a promising approach for accurate and robust measurements of metabolism in human hyperpolarized 13C-pyruvate MRI. We evaluate this method in human prostate cancer studies, where we observed variability of ±5-10s in the bolus delivery that can lead to errors in other analysis methods.
This abstract and the presentation materials are available to members only; a login is required.